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A kind invitation from Patty Johann. . .



. . . I am terrified!



Goals of this talk

To paint a high-level (but very incomplete) picture
and provide some historical background

To ask some provocative/confused questions
and incite the ire of the audience

To explain what excites me about parametricity
and why I think we’re in a “golden age”
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Strachey’s “parametric polymorphism” (1967)

Idea: Parametricity = Genericity
Polymorphic function should behave “generically”, i.e.,
“run the same code” at any instantiation of its type

Explained with a single example:

map : ∀α, β. (α→ β)→ α list→ β list

Supported by various languages, including Liskov’s
CLU and Girard-Reynolds’ System F (early 1970s)

But not clear formally what
parametricity-as-genericity is or what it buys you. . .



Reynolds’ “relational parametricity” (1983)

Idea: Interpret types τ as logical relations R JτK ρ
Base types interpreted via identity relation

Universal types ∀α.τ interpreted by intersection over all
relational interpretations of α (I’m being vague)

Abstraction Theorem: If ∆; Γ ` e : τ , then
∀ρ ∈ ∆→Rel. ∀(γ1, γ2) ∈ R JΓK ρ.

(JeK γ1, JeK γ2) ∈ R JτK ρ.

Upshot: Behavior of e must not be affected by
change of data representation of type variables in ∆

JeK γ1 = JeK γ2 if τ is a base type

Ex.: switching between polar and cartesian coordinates

Question

But does Reynolds’ relational parametricity
capture Strachey’s notion of genericity?
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A “criticism” of relational parametricity

From Abramsky and Jagadeesan (2005):

“Relational parametricity is a beautiful and important notion.
However, in our view it is not the whole story. In particular:

It is a “pointwise” notion, which gets at genericity indirectly,
via a notion of uniformity applied to the family of
instantiations of the program, rather than directly capturing
the idea of a program written at the generic level, which
necessarily cannot probe the structure of an instance.

It is closely linked to strong extensionality principles, as shown
e.g. in [ACC93, PA93], whereas the intuition of generic
programs not probing the structure of instances is prima facie
an intensional notion – a constraint on the behaviour of
processes.”

My Answer

Reynolds’ relational parametricity
explains what you can DO with

Strachey’s “generic” notion of parametricity!



A “criticism” of relational parametricity

From Abramsky and Jagadeesan (2005):

“Relational parametricity is a beautiful and important notion.
However, in our view it is not the whole story. In particular:

It is a “pointwise” notion, which gets at genericity indirectly,
via a notion of uniformity applied to the family of
instantiations of the program, rather than directly capturing
the idea of a program written at the generic level, which
necessarily cannot probe the structure of an instance.

It is closely linked to strong extensionality principles, as shown
e.g. in [ACC93, PA93], whereas the intuition of generic
programs not probing the structure of instances is prima facie
an intensional notion – a constraint on the behaviour of
processes.”

My Answer

Reynolds’ relational parametricity
explains what you can DO with

Strachey’s “generic” notion of parametricity!



Two kinds of applications of relational parametricity

1 “Universalist”

2 “Existentialist”



“Universalist” applications of relational parametricity

What can one say about all terms of a certain type?

Definability of types:
Many types (e.g., ×, +, ∃, µ, ν) can be Church-encoded
in terms of ∀ and →
Can use parametricity to build simple, yet very expressive,
“metalanguages” and type theories

Free theorems (Wadler, 1989):
∀-types say something interesting about their inhabitants,
e.g., f : ∀α.[α]→ [α] can only rearrange elements:

∀g : σ → τ. (map g) ◦ f [σ] = f [τ ] ◦ (map g)

Applicable to proving correctness of various program
optimizations (e.g., short-cut fusion)



“Existentialist” applications of relational parametricity

What can one say about particular terms of a
certain type?

Representation independence (Mitchell, 1986):
Can prove two ADTs contextually equivalent if there
exists a simulation relation between their type
representations that is preserved by their operations

Essentially a special kind of universalist application:
exploits a fact about all contexts of a certain type

Fundamentally a relational, extensional property,
not an intensional one!



Can we talk about parametricity
without talking about:
1 Semantics?
2 Syntax?



Plotkin and Abadi’s logic for parametricity (1993)

Second-order logic with primitive notions of
relations and equality

Logical relations R JτK ρ definable in the logic

Parametricity axiom, which can be used to establish
definability of types in a purely syntactic manner:

∀β1, . . . , βn. ∀x : (∀α.τ [α, β1, . . . , βn]).

(x , x) ∈ R J∀α.τ [α, β1, . . . , βn]K {βj 7→ eqβj}

Demonstrates the semantics-independent
expressive power of parametricity



Semantic models and relatives of parametricity

Reynolds built his logical relations over a naive,
classical set-theoretic model of System F types that
turned out not to exist!

Lots of work on models that do exist + semantic
criteria for what being a “parametric model” means:

Pitts’ constructive set-theoretic model, Bainbridge et al.’s
PER model, realizability models

“Reflexive graph” models: parametric APL structures
(Birkedal-Møgelberg), parametric limits (Dunphy-Reddy)

Related notions of “uniformity”:
Naturality, dinaturality, genericity (Longo et al., 1993)

Does parametricity subsume these?

Question

What’s the state of the art here?
(I don’t know.)
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The overarching trend in parametricity research

From Voigtländer and Johann (2007):

“The ultimate goal of the line of research advanced in this

paper is the development of tools for reasoning about

parametricity properties of, and parametricity-based

transformations on programs in, real programming languages

rather than toy calculi.”



The overarching trend in parametricity research

Generalizing parametricity to handle
richer languages supporting:

Computational effects (recursion, mutable state,
control operators, concurrency)

Higher kinds, dependent types

Units of measure

Substructural types

Dynamic type analysis

. . .
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Generalizing parametricity to handle effects

1 Definability of types in the presence of effects

2 Free theorems in the presence of effects

3 Representation independence and local state
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System F + recursion/effects as a core metalanguage?

System F is very expressive, but it’s total

Idea: Adding recursion/effects in the “right” way
could enable it to serve as a metalanguage for the
semantics of more realistic languages

Encode rec. types ⇒ Solve rec. domain equations in types

Problem: Even just parametricity + Y renders the
type theory inconsistent (Huwig-Poigné, 1990)

Need to restrict parametricity to only interpret abstract
types with “admissible” (strict, chain-complete) relations



Plotkin’s idea (1993): Use linearity to model strictness

Theory of PILLY /Lily worked out by
Birkedal-Møgelberg-Petersen denotationally (2006) and
Bierman-Pitts-Russo operationally (2000):

Bierman, Pitts and Russo

Lifting τ⊥ ! !τ

Functions τ → τ ′ ! !τ " τ ′

Strict functions τ ◦→ τ ′ ! τ " τ ′

Smash product τ ⊗ τ ′ ! ∀α.(τ " τ ′ " α) " α

Coalesced sum τ ⊕ τ ′ ! ∀α. !(τ " α) " !(τ ′ " α) " α

Product τ × τ ′ ! ∀α.((τ " α) ⊕ (τ ′ " α)) " α

Separated sum τ + τ ′ ! !τ ⊕ !τ ′

Existential ∃ α. τ(α) ! ∀β.(∀α. τ(α) " β) " β

Truth values T ! ∀α. !α " !α " α

Flat naturals N⊥ ! ∀α. !α " !(!α " α) " α

Inductive µα. τ(α) ! ∀α. !(τ(α) " α) " α (α +ve in τ(α))

Co-inductive να. τ(α) ! ∃ α. !(α " τ(α)) ⊗ α (α +ve in τ(α))

Recursive recα. τ(α, α) ! να. τ(µβ. τ(α, β),α) (α +ve in τ(α, β),

β −ve in τ(α, β))

Fig. 1. Lily as a denotational metalanguage

and " using Girard’s famous decomposition: τ → τ ′ = !τ " τ ′.) The defini-
tions in Fig. 1 only have weak properties if one works up to β-convertibility of
terms. To get stronger properties, such as category-theoretic universal prop-
erties, it should suffice to work with a notion of equality of terms that makes
∀-types relationally parametric in the sense of Reynolds [24]. In theory, one
way to generate such a notion of equality is via a suitable model: Plotkin [23]
sketches one using strict, inductive partial equivalence relations on a domain
model of the untyped lambda calculus. However, in practice, as far as we
know, the details of this relationally parametric model of polymorphic linear
lambda calculus with recursion have not been worked out in detail. We take
a different 1 and more computational approach: we make polymorphic linear
lambda calculus with recursion into a programming language (we call it Lily)
by endowing it with an operational semantics; we choose a particular notion of
contextual equivalence derived from the operational semantics; and we prove
that this notion of term equality is relationally parametric with respect to a
suitable notion of binary relation. This strategy has been applied successfully
by the second author to the combination of polymorphism with PCF [21] and
with call-by-value PCF [20]. However, it is not so easy to apply the strategy

1 It should also be noted that Lily’s exponential types give a more refined treatment of
usage and strictness properties than does lifting (−)⊥ in the domain model, because the
latter happens to have an extra contraction property that we do not assume for !-types in
Lily.

71



PE: Scaling to monadic effects

Møgelberg and Simpson (2007) define a type theory
PE with linearity, polymorphism, and
value/computation types à la Levy’s CBPV

Value/computation types needed, e.g., to allow for
effectful operations at polymorphic type

choice : ∀X . X → X → X

Again, many types are encodable, although PE does
not handle recursion

Question

Are these type theories (PILLY , PE)
actually useful as metalanguages?

What’s left to do here?
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Generalizing parametricity to handle effects

1 Definability of types in the presence of effects

2 Free theorems in the presence of effects

3 Representation independence and local state



Pitts-Stark’s >>-closure and operational logical relations

Pitts-Stark (1998) propose a simpler alternative to
“admissibility” and PILLY for operational models:
>>-closure (aka ⊥⊥-closure, biorthogonality)

Useful for several reasons:
Ensures that the LR is admissible in the domain-theoretic
sense (and thus, closure under fixed-points)

Ensures completeness w.r.t. contextual equivalence

Works even for lang’s with “context-sensitive” semantics



Key results about free theorems in the presence of effects

Pitts (2000):
Studied PolyPCF, a lazy language with recursion

Proved various extensionality principles, as well as
definability of list and ∃ types

Johann (2002):
Proved correctness of various free-theorem-based
optimizations like short-cut fusion in a setting like Pitts’s



Key results about free theorems in the presence of effects

Johann-Voigtländer (2004, 2007):
Proved correctness of restrictions of the above
optimizations in the presence of “seq”

Influential partly due to its surprising (negative) results

Johann-Simpson-Voigtländer (2010):
Generic framework for >>-closed relations in the presence
of arbitrary Plotkin-Power-style “algebraic effects”

Proved extensionality principles and definability of
monadic type T (τ) ≈ ∀α.(τ → α)→ α

Question

Do the JV free-theorem restrictions invalidate
common cases where short-cut fusion is useful?
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The “identity extension” lemma

Apparently important lemma whose importance
confuses me:

R JτK (α 7→ eqσ) = eqτ [σ/α]

Seems necessary to prove parametricity in
denotational settings

But not needed in operational settings
Falls out as a consequence of >>-closure,
but not when step-indexing is used!

Seems relevant in proving certain definability results and
free theorems (e.g., short-cut fusion) but not others

Question

What the hell is going on here?
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Representation independence for local state

Reasoning about local state much like reasoning
about abstract types

Should be able to change internal data representation
without affecting clients

Some major differences:
State and the invariants on it may “change shape” as the
program is executed

State has a “temporal” component in that it can undergo
irreversible changes



Denotational models of Algol, focused on “invariants”

Reynolds-Oles (1981-82):
Functor-category model (a kind of Kripke model),
but fairly weak reasoning principles

Meyer-Sieber (1988):
Shows how to support reasoning about invariants on a
range of interesting (second-order) examples:

begin
integer x ;
procedure Add2;
begin x := x + 2 end

x := 0;P(Add2);
if x mod 2 = 0 then diverge

end

≈ diverge



Denotational models of representation independence

O’Hearn-Tennent (1993):
The first approach to really support reasoning about
representation independence:

begin
integer x ;
integer procedure Val ;
Val := x ;

procedure Inc ;
begin x := x + 1 end

x := 0;P(Inc ,Val);
end

≈

begin
integer x ;
integer procedure Val ;
Val := −x ;

procedure Dec ;
begin x := x − 1 end

x := 0;P(Dec ,Val);
end

Reduces rep. ind. in Algol to rep. ind. in System F by a
polymorphic store-passing interpretation

Sieber (1992) provides an alternative approach, also based
on logical relations, that I don’t know the details of



Denotational accounts of irreversible state change

O’Hearn-Reynolds (1995):
Similar to O’Hearn-Tennent, but interprets Algol into a
polymorphic linear type system in order to track
irreversibility of state change

begin
integer x ;
procedure Inc ;
begin x := x + 1 end

x := 0;P(Inc);
if x > 0 then diverge

end

≈ P(diverge)

O’Hearn-Reddy (1995):
A completely different approach to locality and
irreversibility based on placing invariants on the
observable actions on local state



Operational models of local first-order state

Pitts (1997):
Operational possible-worlds model of Idealized Algol (IA),
inspired by O’Hearn-Reynolds and prior work

Provides a more direct method of proving all previous
results, including reasoning about irreversibility

Pitts-Stark (1998):
Models a simply-typed ML-like language with int ref’s,
but does not support reasoning about irreversibility

Major difficulty involves the fact that variables may escape
their scope (>>-closure is introduced to deal with this)

One of my all-time favorite papers

Question

Are there any examples of Algol equivalences
that become inequivalences when ported to ML?
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Operational model of local higher-order state + µ,∀,∃
τ = ∃α.∃β. (unit→ α)× (unit→ β)× (α× β → bool)
e1 = let x = ref 0 in

pack 〈int, pack 〈int, λ . x := !x + 1; !x ,
λ . x := !x + 1; !x ,
λp. p.1 = p.2〉〉

e2 = pack 〈unit, pack 〈unit, λ . 〈〉,
λ . 〈〉,
λ . false〉〉

Ahmed-Dreyer-Rossberg (2009):
Building on Pitts-Stark (1998) and Ahmed (2004, 2006),
step-indexing used to model higher-order state + µ,∀,∃
Key idea: Irreversibility of state change modeled through
state transition systems (STS’s)

Especially useful for modeling “generative” ADTs that
grow over time in accordance with changes to local state



The local state of the art

equivalent (at the type τ ). To see intuitively why they are equiv-
alent, observe that e2 allocates a fresh (local) location x, which
initially points to 0, and then returns a function value—call it v2.
When v1 and v2 are applied (at any point in the future) to some call-
back function f , they both call f twice. Before the first and second
calls, v2 will set x to 0 and 1, respectively. Thus, even if the second
call to f internally applies v2 again, the last thing x will get set to
(before it is dereferenced) is always 1. Note that this reasoning as-
sumes that control flow in the language is “well-bracketed”—in the
sense that the call to f cannot escape its current continuation—and
also that the language lacks exceptions (both are true for Fµ!).

In order to prove this example, we need to be able to establish
an invariant concerning the local state of v2. However, we really
need more than just a simple fixed invariant because the only such
invariant that holds here is the one stating that x points to either 0
or 1, and that is not strong enough. This is where STSs come in.
Dreyer et al. [12] prove this example using the following STS:

x !→ 0 x !→ 1

public
!!

private

""

The states of this STS represent the possible “abstract” states in
which the functions we are proving equivalent may find themselves,
and associated with each abstract state is a “physical” relation on
heaps. In the left state, the heap of the second program must contain
[x !→ 0], and in the right state, it must contain [x !→ 1]. (No
restrictions are placed on the heap of the first program, since v1

does not manipulate any local state.)
The accessibility relation between these abstract states is gov-

erned by two transition relations (preorders on the state space): a
private and a public one. The rough intuition is that the private (or
“full”) transition relation includes all legal state transitions, while
the smaller, public transition relation governs the legal transitions
that function calls can make (when their behavior is viewed exten-
sionally). For proving equivalence of v1 and v2, we require transi-
tions of some kind from each of these states to the other because
repeated applications of v2 will indeed result in x flip-flopping back
and forth between 0 and 1. However, the transition from x !→ 1 to
x !→ 0 may be considered private, not public, because when the
behavior of v1 is viewed end-to-end, it will never start with x !→ 1
and end with x !→ 0. Moreover, restricting the public transition re-
lation in this way is essential to making the proof go through: since
the second call to f starts with x !→ 1 and is required (by defini-
tion) to make a public transition, we know that, when it returns, x
must still point to 1, and thus !x will evaluate to 1.

What we have described here is the high-level idea of the equiv-
alence proof of v1 and e2, which is essentially the same when us-
ing our RTSs as it is when using STS-indexed KLRs. One differ-
ence is that, with KLRs, the proof is driven by the need to show
that (v1, e2)—and thus also (v1, v2)—are in the logical relation at
the type τ . With RTSs, there is no logical relation defining what it
means for functions to be related at type τ . Instead, in typical coin-
ductive style, we need to enter v1 and v2 into the “local knowledge”
of our RTS, which in turn generates a proof obligation to show that
these function values do in fact behave equivalently when passed
arguments that are related by the global knowledge. Fundamentally,
this ends up being only a minor change to the structure of the proof.
(We will see the formal RTS proof of this example in Section 7.1.)

6. Relation Transition Systems for Fµ!

In this section, we present our full-blown relation transition system
(RTS) model for Fµ!. This RTS model generalizes the model from
Section 4 in a superficially very simple way: whereas previously

τ ∈ Type ::= . . . | ∀α. τ | ∃α. τ | ref τ | n
CTypeF := . . . ∪ { (∀α. τ) ∈ CType } ∪{ ref τ ∈ CType }

∪ {n ∈ TypeName }

Figure 7. Semantic domains for Fµ!.

R(τ) := R(τ) if τ ∈ CTypeF
...

R(∃α. τ) := { (pack v1, pack v2) | ∃τ ′. (v1, v2) ∈ R(τ [τ ′/α]) }

Figure 8. Value closure for Fµ! (if R ∈ VRelF, then R ∈ VRel).

DepWorld(P ) := { (S,','pub, N, L, H) ∈
Set × P(S × S) × P(S × S) × P(TypeName) ×
(SP →S→VRelF→VRelF) × (SP →S→VRelF→HRel) |
','pub are preorders ∧ 'pub is a subset of ' ∧
L monotone in 1st arg w.r.t. 'P , in 2nd w.r.t. ', in 3rd w.r.t. ⊆ ∧
H monotone in 3rd arg w.r.t. ⊆ ∧
∀sP, s, G.
(∀n /∈ N. L(sP)(s)(G)(n) = ∅) ∧
(∀τ1, τ2. ∀(f1, f2)∈L(sP)(s)(G)(τ1→τ2). f1, f2∈FunVal) ∧
(∀α, τ. ∀(v1, v2)∈L(sP)(s)(G)(∀α. τ). v1, v2∈TyFunVal) }

where
FunVal := { f ∈ CVal | ∀v. beta(f v) defined }
TyFunVal := { v ∈ CVal | beta(v[]) defined }

beta(e) :=

{
e′ if ∀h. h, e ↪→ h, e′

undef otherwise

World := { W ∈ DepWorld({∗}, {(∗, ∗)}) }
LWorld := { w ∈ DepWorld(Wref .S, Wref .') |

∀sref , s, G, τ. w.L(sref)(s)(G)(ref τ) = ∅ }

Figure 9. Definition of worlds (relation transition systems) and
auxiliary RTS definitions.

we proved two terms equivalent by exhibiting a consistent local
knowledge L, we now do so by exhibiting a consistent world W .

Worlds Worlds are state transition systems (equipped with “pub-
lic” and “private” transitions, just as described in Section 5) that
control how the local knowledge of a module and the properties of
its local state may evolve over time. Formally (Figure 9), a world
consists of: the transition system’s (possibly infinite) state space
(S); the private (or full) transition relation (') and a smaller pub-
lic transition relation ('pub), both preorders; a set of type names
that are used to represent abstract types (N); a mapping from states
to local knowledges (L); and a mapping from states to heap rela-
tions (H). For now, ignore the distinction between different kinds
of worlds as well as the SP , sP , and 'P objects in that figure.

As before, the local knowledge (at each state) is parameterized
by—and must be monotone in—the global knowledge G. The same
applies to the heap relation, which describes pairs of subheaps that
are “owned” by the RTS. The parameter G here provides a way
of referring to the global equivalence on values when establishing
invariants on the contents of local heaps; this is especially critical
in dealing with higher-order state. While the local knowledge map-
ping must be monotone in its state index (w.r.t. '), the heap relation
mapping need not be. Indeed, since a module’s local state is hidden
from the environment, there is no reason to require that heaps re-
lated in one state will continue to be related in future states (e.g., in
the example in Section 5, x !→ 0 or x !→ 1 but not both).

We have seen in the previous section section how a local knowl-
edge and its closure relate values at λµ types. This carries over to
the full setting. But how do we deal with the additional types of
Fµ!, i.e., with universal, existential, and reference types?
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τ = (unit→ unit)→ int
e1 = λf . (f 〈〉; f 〈〉; 1)
e2 = let x = ref 0 in λf . (x := 0; f 〈〉; x := 1; f 〈〉; !x)

Dreyer-Neis-Birkedal (2010):
Show that a >>-closure of the ADR model is sound in
the presence of call/cc, but some extensions to it are not

Give a framework for understanding the impact of
higher-order state, call/cc and exceptions
on STS-style reasoning about local state

Question

“Full abstraction” in operational models
seems to be a rather uninformative property.

It seems to imply something stronger
in denotational models, but why?
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(before it is dereferenced) is always 1. Note that this reasoning as-
sumes that control flow in the language is “well-bracketed”—in the
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also that the language lacks exceptions (both are true for Fµ!).

In order to prove this example, we need to be able to establish
an invariant concerning the local state of v2. However, we really
need more than just a simple fixed invariant because the only such
invariant that holds here is the one stating that x points to either 0
or 1, and that is not strong enough. This is where STSs come in.
Dreyer et al. [12] prove this example using the following STS:

x !→ 0 x !→ 1

public
!!

private

""

The states of this STS represent the possible “abstract” states in
which the functions we are proving equivalent may find themselves,
and associated with each abstract state is a “physical” relation on
heaps. In the left state, the heap of the second program must contain
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does not manipulate any local state.)
The accessibility relation between these abstract states is gov-

erned by two transition relations (preorders on the state space): a
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tions of some kind from each of these states to the other because
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6. Relation Transition Systems for Fµ!

In this section, we present our full-blown relation transition system
(RTS) model for Fµ!. This RTS model generalizes the model from
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τ ∈ Type ::= . . . | ∀α. τ | ∃α. τ | ref τ | n
CTypeF := . . . ∪ { (∀α. τ) ∈ CType } ∪{ ref τ ∈ CType }

∪ {n ∈ TypeName }

Figure 7. Semantic domains for Fµ!.

R(τ) := R(τ) if τ ∈ CTypeF
...

R(∃α. τ) := { (pack v1, pack v2) | ∃τ ′. (v1, v2) ∈ R(τ [τ ′/α]) }

Figure 8. Value closure for Fµ! (if R ∈ VRelF, then R ∈ VRel).

DepWorld(P ) := { (S,','pub, N, L, H) ∈
Set × P(S × S) × P(S × S) × P(TypeName) ×
(SP →S→VRelF→VRelF) × (SP →S→VRelF→HRel) |
','pub are preorders ∧ 'pub is a subset of ' ∧
L monotone in 1st arg w.r.t. 'P , in 2nd w.r.t. ', in 3rd w.r.t. ⊆ ∧
H monotone in 3rd arg w.r.t. ⊆ ∧
∀sP, s, G.
(∀n /∈ N. L(sP)(s)(G)(n) = ∅) ∧
(∀τ1, τ2. ∀(f1, f2)∈L(sP)(s)(G)(τ1→τ2). f1, f2∈FunVal) ∧
(∀α, τ. ∀(v1, v2)∈L(sP)(s)(G)(∀α. τ). v1, v2∈TyFunVal) }

where
FunVal := { f ∈ CVal | ∀v. beta(f v) defined }
TyFunVal := { v ∈ CVal | beta(v[]) defined }

beta(e) :=

{
e′ if ∀h. h, e ↪→ h, e′

undef otherwise

World := { W ∈ DepWorld({∗}, {(∗, ∗)}) }
LWorld := { w ∈ DepWorld(Wref .S, Wref .') |

∀sref , s, G, τ. w.L(sref)(s)(G)(ref τ) = ∅ }

Figure 9. Definition of worlds (relation transition systems) and
auxiliary RTS definitions.
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Bisimulations for ML-like languages

Environmental bisimulations
Coinductively-defined sets of relations, quite similar to the
ADR model in terms of expressive power

Sumii-Pierce (2004, 2005), Koutavas-Wand (2006),
Sangiorgi-Kobayashi-Sumii (2007), Sumii (2009)

Normal form (or open) bisimulations
Elegant treatment of higher-order functions, can be
combined with env. bisim. to model local H-O state

Lassen-Levy (2007, 2008), Støvring-Lassen (2007)

Parametric bisimulations
Synthesis of ideas from the above techniques, as well as
Dreyer-Neis-Birkedal logical relations

Hur-Dreyer-Neis-Vafeiadis (2012)
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My “existentialist” view

Looking at concrete applications of parametricity is
really useful!

Examples help to convey intuitions and uncover
deficiencies in existing models

Some of the most influential papers are in large part
influential thanks to emphasis on concrete examples

Meyer-Sieber (1988), Wadler (1989), Kennedy (1997),
Pitts-Stark (1998), Johann-Voigtländer (2004), . . .

Denotational models provide amazing insights, but
operational models offer a lower barrier to entry

Enabled someone like me to get involved in the field and
start working out examples quickly without learning a
huge body of mathematics first



We’re in a golden age of parametricity research!

We’ve spent 30 years building the foundations of
the house of parametricity, let’s live in it!

Now that we’ve adapted parametricity to more realistic
languages, let’s start deploying it in a broader range of
“real” applications besides free theorems and ctx. equiv.

This is win-win
New apps will expose further holes in our foundations,
just as concrete examples have done in the past

For reasoning about large systems, abstraction is key,
and parametricity is the only game in town



Application #1: Compositional compiler correctness

Goal: compositional equivalences between programs
in different languages (Benton et al.)

e.g., compositional compiler correctness

Horizontal compositionality is preservation of
equivalence under linking of modules.

Vertical compositionality is transitive composition
of equivalence proofs.
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Parametric bisimulations to the rescue!
(POPL’12 – Joint work with Hur, Neis, Vafeiadis)

Logical relations are not transitively composable
Especially step-indexed Kripke logical relations

Hur et al. [ICFP09, POPL11] only studied one-pass compilers

Bisimulations do not scale (in an obvious way) to
inter-language reasoning

Due to their use of “syntactic” devices for H-O functions

Parametric bisimulations remove these limitations
“Relational” treatment of H-O fcns (like logical relations)

Supports transitive composition of proofs (like bisim’s)



Application #2: Making substructural types more flexible

Combination of existential + substructural types
Allows for precise control over invariants on private state

Example: interface of a memory allocator whose internal
invariant depends on the set of allocated locations

∃A : LocSet→ Type.

init cap : A(∅)
⊗ malloc : !∀L : LocSet. A(L) (

∃X : Loc. ptr X ⊗ cap X 1⊗ A(L ] {X})
⊗ free : !∀L : LocSet. ∀X : Loc.

ptr X ⊗ cap X 1⊗ A(L ] {X}) ( A(L)

Problem: Interface pollution for clients
A client must thread the “capability” A(L) through its
interface to guard against interference from other clients



Superficially substructural types
(Submitted – Joint work with Krishnaswami, Turon, Garg)

We propose a new sharing rule:
Enables A(L) to be split into “fictionally disjoint” pieces,
so clients can be oblivious to one another’s existence

split : ∀L1, L2 : LocSet. A(L1 ] L2) ( A(L1)⊗ A(L2)
join : ∀L1, L2 : LocSet. A(L1)⊗ A(L2) ( A(L1 ] L2)

This can be done for any commutative monoid!
Each ADT can pick whatever monoid is best

Builds on Birkedal et al.’s work on separation logic

Soundness of the rule proven using a novel variant of
Dreyer-Neis-Birkedal possible-worlds model, with the
STS’s replaced by monoids



Application #3: Log. relations for fine-grained concurrency
(Joint work with Turon, Thamsborg, Ahmed, Birkedal)

Verification of fine-grained concurrent algorithms
People have focused on linearizability (Herlihy-Wing, ’90),
but what client really cares about is contextual refinement

class TreiberStack[A]
def push (a : A) = ...
def tryPop () = ...

�

class StackSpec[A]
private val s = new SeqStack[A]
def push (a : A) = atomic {s.push(a); }
def tryPop () = atomic {s.tryPop(); }

We’re adapting STS-based logical relations to verify
these contextual refinement properties directly

This is work in progress, but already we can see that new
and interesting extensions of existing models are required



Parametricity is our secret weapon.
Let’s put it to work!


